As an illustration we examine the problem

$$\begin{aligned} \frac{\partial U_{1}}{\partial x} &= \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[\rho U_{1}^{2} \frac{\partial U_{1}}{\partial \rho} \right] + \frac{0.5 \left(\rho - R\right)^{2}}{\left[1.5\rho^{2} + 1.5x \left(\rho - R\right)^{2} \right]^{1/3}} - 2 \left(1 + x \right) - \frac{R}{\rho} x, \quad 0 < \rho < R; \\ \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[\rho U_{2} \frac{\partial U_{2}}{\partial \rho} \right] = 0, \quad R < \rho < 2R; \\ \frac{\partial U_{1} \left(0, x \right)}{\partial \rho} &= 0, \quad U_{1} \left(\rho, 0 \right) = \frac{3}{V} \frac{2R^{2} \ln 2 + (1.5)^{2/3} R^{4/3}}{2R^{2} \ln 2 + (1.5)^{2/3} R^{4/3}}; \\ U_{1} \left(R - 0, x \right) &= U_{2} \left(R + 0, x \right), \quad U_{2} \left(2R \right) = \sqrt{2R^{2} \ln 2 + (1.5)^{2/3} R^{4/3}}; \\ \rho U_{1}^{2} \frac{\partial U_{1}}{\partial \rho} \Big|_{\rho = R - 0} - \rho U_{2} \frac{\partial U_{2}}{\partial \rho} \Big|_{\rho = R + 0} = \Psi \left(x \right). \end{aligned}$$

It is required to find $U(\rho, x)$ and $\Psi(x)$. This problem has the known exact solution

$$U_{1} = \sqrt[9]{[1.5\rho^{2} + 1.5x(\rho - R)^{2}]^{2}},$$
$$U_{2} = \sqrt{2R^{2}\ln(\rho/R) + (1.5)^{2/3}R^{4/3}}, \quad \Psi(x) = 0.$$

To find an approximate solution we use the difference scheme (27) with h = 0.1, $\tau = 0.04$, and R = 1. We have carried out the numerical computation on a BÉSM-4 digital computer. We give the values of $Y_{i,k}$ for K = 400: $Y_{0,k} = 2.8843$, $Y_{2,k} = 2.4897$, $Y_{4,k} = 2.0715$, $Y_{6,k} = 1.6368$, $Y_{8,k} = 1.2431$, $Y_{10,k} = 1.1442$, $Y_{12,k} = 1.2920$, $Y_{14,k} = 1.4083$, $Y_{16,k} = 1.5004$, $Y_{18,k} = 1.5776$, $Y_{20,k} = 1.6425$. We have also made a comparison of the $Y_{i,k}$ for K = 400 with the exact solution for x = 16. The error turns out to be not greater than 0.007.

LITERATURE CITED

- 1. A. V. Lykov, Heat- and Mass-Transfer Handbook [in Russian], Énergiya, Moscow (1972).
- 2. A. V. Lykov, A. A. Aleksashenko, and V. A. Aleksashenko, Conjugate Convective Heat-Transfer Problems [in Russian], Izd. Belorussk. Gos. Univ., Minsk (1971).
- 3. S. K. Godunov and V. S. Ryaben'kii, Finite-Difference Schemes [in Russian], Nauka, Moscow (1973).
- 4. A. A. Samarskii, Theory of Finite-Difference Schemes [in Russian], Nauka, Moscow (1977).

EFFECT OF A BIPERIODIC SYSTEM OF PLANE INCLUSIONS ON A PLANE STEADY TEMPERATURE FIELD

I. M. Abdurakhmanov and B. G. Alibekov UDC 536.24.02

Determining the complex potential of a plane temperature field perturbed by a biperiodic system of thin inclusions reduces to the solution of a singular integrodifferential equation.

1. Suppose that a plane steady temperature field is perturbed by some finite system of cuts (lines) Γ_n , n = 1, N. Each line may be taken to be, e.g., a foreign inclusion (or crack) of sufficiently large extension (relative to its width), the thermal conductivity k_n of which differs from the thermal conductivity k of the basic medium, taken to be the complex-variable plane z = x + iy. The set of all the lines Γ_n is denoted by $\Gamma = \Gamma_1 + \ldots + \Gamma_N$.

Consider the problem of finding the temperature field perturbed by inclusions, assuming that the temperature in a homogeneous body (in the absence of inclusions) is determined by a given harmonic function $T_0(x, y) = \text{Re } F(z)$.

The complex potential of the perturbed temperature field $W(t) = T + i\psi$, where ψ is the current function associated with the temperature T, will be found as the sum of a given function F(z) and a Cauchy-type integral of unknown density taken along the curve Γ

Dagestan Branch, Academy of Sciences of the USSR. Institute of Physics, Makhachkala. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 5, pp. 930-934, November, 1978. Original article submitted November 25, 1977.

$$W(z) = F(z) + \Phi(z), \quad \Phi(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\mu(t) dt}{t-z}.$$
(1.1)

Assuming, so as to be specific, that $k_n = k_0 \ll k$, the unknown function $\mu(t)$ will be found using the boundary condition [1]

$$\delta \frac{\partial \psi}{\partial s} = T^{-} - T^{+}, \quad \delta = 2h_{0}k/k_{0}.$$
(1.2)

Here T^+ and T^- are the values of the temperature at the left-hand and right-hand edges of the inclusion; $2h_0(s)$ is the width of the inclusion in the cross section s.

It is assumed that the derivative of $\mu(t)$ is continuous in the Holder sense [2]. Applying the Sokhotskii formula [2] to the function W(z) in Eq. (1.1) as $z \rightarrow t \in \Gamma$ and using the boundary conditions in Eq. (1.2), a singular integrodifferential equation for the determination of the function

$$\mu(t) = T^{+} - T^{-} \tag{1.3}$$

is obtained

$$|t'(s)|\frac{\mu(t)}{\delta(s)} = \operatorname{Re}\left[t'(s)\left(iF'(t) + \frac{1}{2\pi}\int_{\Gamma}\frac{\mu'(\tau)d\tau}{\tau-t}\right)\right].$$
(1.4)

Here s is an arbitrary increasing parameter such that, when s varies over the interval $[s^-, s^+]$, the point t(s) covers the whole length of Γ . Suppose that the limiting temperature values T^+ and T^- at each end of the line Γ_n are equal; then, from Eq. (1.3)

$$\mu(t_n^-) = \mu(t_n^+) = 0. \tag{1.5}$$

Here t_n^- and t_n^+ denote the left-hand and right-hand ends of the line Γ_n , respectively. The condition in Eq. (1.5) must be used in solving Eq. (1.4).

If the real part of the given function F(z) and the system of inclusions Γ are biperiodic with basic periods 2ω and $2\omega'$, the temperature field perturbed by inclusions will also be biperiodic, i.e., the real part ReW(z) of the complex potential of the perturbed field is a biperiodic function [the imaginary part of F(z) or W(z) may differ by a constant value at congruent points]. To construct this periodic function it is necessary to sum the Cauchy-type integrals of the form in Eq. (1.1) taken over the whole length $t + 2n\omega + 2m\omega'$, where $t\in\Gamma$, while n and m are integers. The Weierstrass zeta function $\zeta(u)$ may be used [2, 3], and the complex potential may be written in the form

$$W(z) = F(z) + \Phi(z) + Cz, \qquad (1.6)$$

$$\Phi(z) = \frac{1}{2\pi i} \int_{\Gamma} \mu(t) \vartheta\left(\frac{t-z}{2\omega}\right) dt, \quad \vartheta\left(\frac{u}{2\omega}\right) = \zeta(u) - \frac{u}{\omega} \zeta(\omega).$$

The unknown complex number C is determined by the biperiodicity condition for the temperature field

$$\operatorname{Re}\left[W\left(z+2\omega\right)-W\left(z\right)\right]=0, \quad \operatorname{Re}\left[W\left(z+2\omega'\right)-W\left(z\right)\right]=0. \tag{1.7}$$

Since at congruent points the function $\vartheta(v)$ satisfies the relation

$$\vartheta (v + n + m\tau) = \vartheta (v) - \pi m i/\omega, \quad \tau = \omega'/\omega, \quad (1.8)$$

where n and m are integers, Eqs. (1.6) and (1.7) lead to a condition uniquely determining the constant C

$$\operatorname{Re}\left[\omega C\right] = 0, \quad \operatorname{Re}\left[4\omega\omega' C - \int_{\mathbf{r}} \mu(t) \, \mathrm{d}t\right] = 0. \tag{1.9}$$

It follows from these relations that if

$$\int_{\Gamma} \mu (t) \, dt = 0, \tag{1.10}$$

then C = 0 and $\Phi(z)$ in Eq. (1.6) is biperiodic; otherwise, the imaginary part of $\Phi(z)$ at congruent points would not be a constant.

To determine the real function $\mu(t)$, Eq. (1.6) yields, in view of the boundary conditions in Eq. (1.2), the equation

$$|t'(s)|\frac{\mu(t)}{\delta(s)} = \operatorname{Re}\left[t'(s)\left(iF'(t) + iC + \frac{1}{2\pi}\int_{\Gamma}\mu'(\tau)\vartheta\left(\frac{\tau-t}{2\omega}\right)d\tau\right)\right].$$
(1.11)

<u>Remark.</u> Passing to the limit as $\omega' \rightarrow \infty$ in Eqs. (1.6) and (1.11) yields the expression for the complex potential and the equation for $\mu(t)$ in the periodic case, considered in [4].

2. Suppose that in the plane considered above there is an infinite system of infinite parallel rectilinear cuts (inclusions) of low conductivity and constant width ($\delta = \text{const}$) at a constant spacing of 2d. The axis 0x in the z plane is directed along one of the inclusions. Suppose that a biperiodic function with periods 2a and 2di is defined in the z plane. Then the temperature field perturbed by inclusions will be biperiodic with periods 2a and 2di and 2di. As the basic parallelogram, the rectangle $D = \{-a \le x < a, -d \le y < d\}$ will be used. The line Γ coincides with the segment of the real axis $-a \le x \le a$.

Since the function $\vartheta(v)$ takes real values for real values of the argument, Eq. (1.11) may be written for the given case, using the boundary values of $\Phi(z)$ in Eq. (1.8), in the form

$$\Phi^{+} - i\delta\Phi^{+'}/2 = \Phi^{-} + i\delta\Phi^{-'}/2 + \delta \operatorname{Re}\left[iF'(x) - C_{0}\right].$$
(2.1)

The subscripts + and - denote the limiting values of $\Phi(z)$ and $\Phi'(z)$ above and below the integration line $\neg a \leq x \leq a$, respectively. The constant C_0 is determined, in accordance with Eq. (1.9), from the formula

$$C_{0} = \frac{1}{4ad} \int_{-a}^{a} \mu(x) dx, \ C = iC_{0}.$$
 (2.2)

It will be expedient to introduce the auxiliary function

$$\Psi^{\pm}(x) = \Phi^{\pm}(x) \mp i\delta \Phi^{\pm'}(x)/2.$$
(2.3)

The boundary condition in Eq. (2.1) then takes the simple form

$$\Psi^{+} - \Psi^{-} = \delta \operatorname{Re} \left[iF'(x) - C_{0} \right].$$
(2.4)

Since $\Phi(z)$ and $\Phi'(z)$ are written using integrals with the kernel $\mathcal{X}(v)$ and satisfy the conditions

$$\overline{\Phi}(z) = -\Phi(z), \quad \overline{\Phi}'(z) = -\Phi'(z), \quad (\overline{\Phi}(z) = \overline{\Phi(z)}),$$

the functions $\Psi^{\pm}(\mathbf{x})$ are boundary values of the piecewise holomorphic function $\Psi(\mathbf{z})$, satisfying the condition $\overline{\Psi}(\mathbf{z}) = -\Psi(\mathbf{z})$ and written using an integral with kernel $\vartheta(\mathbf{v})$. Therefore, on the basis of the Sokhotskii formula [2], the following expression may be written:

$$\Psi(z) = \frac{\delta}{2\pi i} \int_{-a}^{a} \operatorname{Re} \left[iF'(\xi) - C_{0} \right] \vartheta \left(\frac{\xi - z}{2a} \right) d\xi.$$
(2.5)

Using the boundary values of $\Psi(z)$ in Eq. (2.5) and integrating Eq. (2.3), the result obtained for the function $\mu(x) = \Psi^+ - \Phi^-$, taking into account the periodicity of the boundary values $\Phi^{\pm}(x)$, is

$$\mu(x) = \frac{2i}{\delta} \int \left\{ \Psi^{-}(\xi) \exp\left[\frac{2i(\xi-x)}{\delta}\right] - \Psi^{-}(\xi) \exp\left[\frac{2i(x-\xi)}{\delta}\right] \right\} d\xi.$$
(2.6)

Substituting $\mu(x)$ from Eq. (2.6) into Eqs. (1.6) and (2.2), the function $\Phi(z)$ and the unknown constant C are found.

For example, suppose that in the considered plane sources of equal strength q > 0 and sinks of strength -q are introduced, respectively, at the points: a) z = (2n + 1)a + i(2md + b), z = (2n + 1)a + i[(2m + 1)d + b] (a linear system of sources and sinks); b) z = 2na + i(2md + b), z = (2n + 1)a + i[(2m + 1)d + b] (a staggered arrangement of sources and sinks); n and m are integers; $0 < b \le d$. Then the complex potential of the unperturbed field may be written in the form

a)
$$F(z) = -\frac{q}{2\pi} \ln \frac{\vartheta_3(v)}{\vartheta_2(v)}$$
; b) $F(z) = -\frac{q}{2\pi} \ln \frac{\vartheta_3(v)}{\vartheta_1(v)}$; $v = \frac{z - ib}{2a}$, (2.7)

Fig. 1. Dimensionless temperature drop along inclusions for different values of b/a.

 $\vartheta_{k}(v)$, k = 1, 2, 3, are the first, second, and third theta functions [2, 3]. Below, consideration will be limited to the basic rectangle $D = \{-a \le x \le a, -d \le y \le d\}$. The functions $\vartheta(v)$ and F'(x) may then be written in a form more convenient for calculation [3]

$$\vartheta\left(\frac{\xi-z}{2a}\right) = \frac{\pi}{2a} \operatorname{ctg} \frac{\pi(\xi-z)}{2a} + \frac{2\pi}{a} \sum_{n=1}^{\infty} \frac{h^{2n}}{1-h^{2n}} \sin \frac{n\pi(\xi-z)}{a},$$

$$\operatorname{Re}\left[iF'(x)\right] = \frac{q}{a} \left[\frac{1}{4} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{a}\right],$$
(2.8)

a)
$$a_n = (-1)^n \left[\frac{1}{2\gamma^n} + \frac{1}{1+h^n} \operatorname{sh} \frac{n\pi b}{a} \right], \quad h = \exp\left(-\frac{\pi d}{a}\right),$$
 (2.9)

b)
$$a_n = \frac{1}{2\gamma^n} - \frac{h^{2^n} - (-1)^n h^n}{1 - h^{2^n}} \sinh \frac{n\pi b}{a}, \quad \gamma = \exp\left(\frac{\pi b}{a}\right).$$
 (2.10)

Using Eqs. (2.8)-(2.10) and making the necessary computations in accordance with Eqs. (2.5), (2.6), (2.2), and (1.6), the following results are obtained:

$$\mu(x) = \frac{q\delta}{a} \left[\sum_{n=1}^{\infty} a_n b_n \cos \frac{n\pi x}{a} + \frac{1}{4(1+\delta/2d)} \right], \qquad (2.11)$$

$$\Phi^{\pm}(z) = -\frac{q\delta}{2a} \left[\sum_{n=1}^{\infty} a_n b_n \left(\frac{2ih^{2n}}{1-h^{2n}} \sin \frac{n\pi z}{a} \pm \exp\left(\pm \frac{in\pi z}{a} \right) \right) \pm 1/4 \left(1 + \delta/2d \right) \right], \quad C_0 = q/4a \left(1 + 2d/\delta \right), \quad (2.12)$$

$$b_n = [1 - h^{2n} - (1 + h^{2n}) n\pi\delta/2a]/(1 - h^{2n})[1 - (n\pi\delta/2a)^2].$$

In Eq. (2.12) the upper (+) and lower (-) signs refers, respectively, to the values $0 < y \le d$ and $-d \le y < 0$; the coefficients a_n are determined from Eq. (2.10).

In Fig. 1, curves of the temperature drop (as a function of q) along the inclusions are shown for $0 \le x/a \le 1$ with d/a = 1, $\delta/2a = 1$, and: a) b/a = 0.1 (1), 0.5 (2); b) b/a = 0.1 (3), 0.5 (4).

NOTATION

T^+ and T^-	are the values of the temperature T at the left-hand and right-hand edges of the inclusion;
Ψ	is the current function;
F(z)	is the complex potential of temperature field unperturbed by inclusions;
W(z)	is the complex potential of temperature field perturbed by inclusions;

k ₀ and k	are the thermal conductivity of the inclusions and the body;
Γ'n	is the smooth line in the complex z plane;
г	is the piecewise continuous line;
2h ₀	is the width of the inclusion;
2ω and 2ω '	are the periods of complex potential W(z);
q	is the source strength.

LITERATURE CITED

- 1. I. M. Abdurakhmanov, Inzh.-Fiz. Zh., 22, No.4 (1972).
- 2. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variables [in Russian], Fizmatgiz, Moscow (1973).
- 3. A. Gurvits and R. Kurant, Theory of Functions [in Russian], Fizmatgiz, Moscow (1968).
- 4. I. M. Abdurakhmanov and B. G. Alibekov, Inzh. -Fiz. Zh., 32, No.3 (1977).