As an illustration we examine the problem

$$
\begin{gathered}
\frac{\partial U_{1}}{\partial x}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho U_{1}^{2} \frac{\partial U_{1}}{\partial \rho}\right]+\frac{0.5(\rho-R)^{2}}{\left[1.5 \rho^{2}+1.5 x(\rho-R)^{2}\right]^{1 / 3}}-2(1+x)-\frac{R}{\rho} x, \quad 0<\rho<R ; \\
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho U_{2} \frac{\partial U_{2}}{\partial \rho}\right]=0, \quad R<\rho<2 R ; \\
\frac{\partial U_{1}(0, x)}{\partial \rho}=0, \quad U_{1}(\rho, 0)=\sqrt[3]{2 R^{2} \ln 2+(1.5)^{2 / 3} R^{4 / 3}} ; \\
U_{1}(R-0, x)=U_{2}(R+0, x), \quad U_{2}(2 R)=\sqrt{2 R^{2} \ln 2+(1.5)^{2 / 3} R^{4 / 3} ;} \\
\left.\rho U_{1}^{2} \frac{\partial U_{1}}{\partial \rho}\right|_{\rho=R-0}-\left.\rho U_{2} \frac{\partial U_{2}}{\partial \rho}\right|_{\rho=R+0}=\Psi(x) .
\end{gathered}
$$

It is required to find $U(\rho, x)$ and $\Psi(x)$. This problem has the known exact solution

$$
\begin{gathered}
U_{1}=\sqrt[3]{\left[1.5 \rho^{2}+1.5 x(\rho-R)^{2}\right]^{2}} \\
U_{2}=\sqrt{2 R^{2} \ln (\rho / R)+(1.5)^{2 / 3} R^{4 / 3}}, \Psi(x)=0
\end{gathered}
$$

To find an approximate solution we use the difference scheme (27) with $h=0.1, \tau=0.04$, and $\mathrm{R}=1$. We have carried out the numerical computation on a BESM-4 digital computer. We give the values of $Y_{i, k}$ for $K=400$: $Y_{0, k}=2.8843, Y_{2, k}=2.4897, Y_{4, k}=2.0715, Y_{8, k}=1.6368, Y_{8, k}=1.2431, Y_{10, k}=1.1442, Y_{12, k}=1.2920, Y_{14}, k=$ 1.4083, $Y_{16, k}=1.5004, Y_{18, k}=1.5776, Y_{20, k}=1.6425$. We have also made a comparison of the $Y_{i, k}$ for $K=$ 400 with the exact solution for $x=16$. The error turns out to be not greater than 0.007 .

LITERATURE CITED

1. A. V. Lykov, Heat- and Mass-Transfer Handbook [in Russian], Énergiya, Moscow (1972).
2. A. V. Lykov, A. A. Aleksashenko, and V. A. Aleksashenko, Conjugate Convective Heat-Transfer Problems [in Russian], Izd. Belorussk. Gos. Univ., Minsk (1971).
3. S. K. Godunov and V. S. Ryaben'kii, Finite-Difference Schemes [in Russian], Nauka, Moscow (1973).
4. A. A. Samarskii, Theory of Finite-Difference Schemes [in Russian], Nauka, Moscow (1977).

EFFECT OF A BIPERIODIC SYSTEM OF PLANE INCLUSIONS

ON A PLANE STEADY TEMPERATCRE FIELD
I. M. Abdurakhmanov and B. G. Alibekov

UDC 536.24.02

Determining the complex potential of a plane temperature field perturbed by a biperiodic system of thin inclusions reduces to the solution of a singular integrodifferential equation.

1. Suppose that a plane steady temperature field is perturbed by some finite system of cuts (lines) Γ_{n}, $\mathrm{n}=\overline{1, \mathrm{~N}}$. Each line may be taken to be, e.g., a foreign inclusion (or crack) of sufficiently large extension (relative to its width), the thermal conductivity k_{n} of which differs from the thermal conductivity k of the basic medium, taken to be the complex-variable plane $z=x+i y$. The set of all the lines Γ_{n} is denoted by $\Gamma=\Gamma_{1}+$ $\ldots+\Gamma_{N}$.

Consider the problem of finding the temperature field perturbed by inclusions, assuming that the temperature in a homogeneous body (in the absence of inclusions) is determined by a given harmonic function $\mathrm{T}_{0}(\mathrm{x}$, $y)=\operatorname{Re} F(z)$.

The complex potential of the perturbed temperature field $W(t)=T+i \psi$, where ϕ is the current function associated with the temperature T, will be found as the sum of a given function $F(z)$ and a Cauchy-type integral of unknown density taken along the curve Γ

Dagestan Branch, A cademy of Sciences of the USSR. Institute of Physics, Makhachkala. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 5, pp. 930-934, November, 1978. Original article submitted November 25, 1977.

$$
\begin{equation*}
W(z)=F(z)+\Phi(z), \quad \Phi(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\mu(t) \mathrm{dt}}{t-z} . \tag{1,1}
\end{equation*}
$$

Assuming, so as to be specific, that $k_{n}=k_{0} \ll k$, the unknown function $\mu(t)$ will be found using the boundary condition [1]

$$
\begin{equation*}
\delta \frac{\partial \psi}{\partial s}=T^{-}-T^{+}, \quad \delta=2 h_{0} k / k_{0} \tag{1.2}
\end{equation*}
$$

Here T^{+}and T^{-}are the values of the temperature at the left-hand and right-hand edges of the inclusion; $2 \mathrm{~h}_{0}(\mathrm{~s})$ is the width of the inclusion in the cross section s.

It is assumed that the derivative of $\mu(t)$ is continuous in the Holder sense [2]. Applying the Sokhotskii formula [2] to the function $W(z)$ in Eq. (1.1) as $z \rightarrow t \in \Gamma$ and using the boundary conditions in Eq. (1.2), a singular integrodifferential equation for the determination of the function

$$
\begin{equation*}
\mu(t)=T^{+}-T^{-} \tag{1.3}
\end{equation*}
$$

is obtained

$$
\begin{equation*}
\left|t^{\prime}(s)\right| \frac{\mu(t)}{\delta(s)}=\operatorname{Re}\left[t^{\prime}(s)\left(i F^{\prime}(t)+\frac{1}{2 \pi} \int_{\Gamma} \frac{\mu^{\prime}(\tau) d \tau}{\tau-t}\right)\right] \tag{1.4}
\end{equation*}
$$

Here s is an arbitrary increasing parameter such that, when s varies over the interval $\left[s^{-}, s^{+}\right]$, the point $t(s)$ covers the whole length of Γ. Suppose that the limiting temperature values T^{+}and T^{-}at each end of the line Γ_{n} are equal; then, from Eq. (1.3)

$$
\begin{equation*}
\mu\left(t_{n}^{-}\right)=\mu\left(t_{n}^{+}\right)=0 \tag{1.5}
\end{equation*}
$$

Here t_{n}^{-}and t_{n}^{+}denote the left-hand and right-hand ends of the line Γ_{n}, respectively. The condition in Eq. (1.5) must be used in solving Eq. (1.4).

If the real part of the given function $F(z)$ and the system of inclusions Γ are biperiodic with basic periods 2ω and $2 \omega^{\prime}$, the temperature field perturbed by inclusions will also be biperiodic, i.e., the real part Re $W(z)$ of the complex potential of the perturbed field is a biperiodic function [the imaginary part of $F(z)$ or $W(z)$ may differ by a constant value at congruent points]. To construct this periodic function it is necessary to sum the Cauchy-type integrals of the form in Eq. (1.1) taken over the whole length $t+2 n \omega+2 m \omega^{\prime}$, where $t \in \Gamma$, while n and m are integers. The Weierstrass zeta function $\zeta(u)$ may be used $[2,3]$, and the complex potential may be written in the form

$$
\begin{gather*}
W(z)=F(z)+\Phi(z)-C z \tag{1.6}\\
\Phi(z)=\frac{1}{2 \pi i} \int_{\Gamma} \mu(t) \theta\left(\frac{t-z}{2 \omega}\right) \mathrm{dt}, \quad \vartheta\left(\frac{u}{2 \omega}\right)-\zeta(u)-\frac{u}{\omega} \zeta(\omega) .
\end{gather*}
$$

The unknown complex number C is determined by the biperiodicity condition for the temperature field

$$
\begin{equation*}
\operatorname{Re}[W(z \div 2 \omega)-W(z)]=0, \quad \operatorname{Re}\left[W\left(z \div 2 \omega^{\prime}\right)-W(z) \mathrm{j}=0\right. \tag{1.7}
\end{equation*}
$$

Since at congruent points the function $\vartheta(v)$ satisfies the relation

$$
\begin{equation*}
\vartheta(v+n+m \tau)=\boldsymbol{\theta}(v)-\pi m i / \omega, \quad \tau=\omega^{\prime} / \omega, \tag{1,8}
\end{equation*}
$$

where n and m are integers, Eqs. (1.6) and (1.7) lead to a condition uniquely determining the constant C

$$
\begin{equation*}
\operatorname{Re}[\omega C]=0, \quad \operatorname{Re}\left[4 \omega \omega^{\prime} C-\int_{\Gamma} \mu(t) \mathrm{dt} \mid=0 .\right. \tag{1.9}
\end{equation*}
$$

It follows from these relations that if

$$
\begin{equation*}
\int_{\Gamma} \mu(t) d t=0 \tag{1.10}
\end{equation*}
$$

then $C=0$ and $\Phi(z)$ in Eq. (1.6) is biperiodic; otherwise, the imaginary part of $\Phi(z)$ at congruent points would not be a constant.

To determine the real function $\mu(\mathrm{t})$, Eq. (1.6) yields, in view of the boundary conditions in Eq. (1.2), the equation

$$
\begin{equation*}
\left\lvert\, t^{\prime}(s)!\frac{\mu(t)}{\delta(s)}=\operatorname{Re}\left[t^{\prime}(s)\left(i F^{\prime}(t)+i C+\frac{1}{2 \pi} \int_{\Gamma} \mu^{\prime}(\tau) \vartheta\left(\frac{\tau-t}{2 \omega}\right) d \tau\right)\right]\right. \tag{1.11}
\end{equation*}
$$

Remark. Passing to the limit as $\omega^{\prime} \rightarrow \infty$ in Eqs. (1.6) and (1.11) yields the expression for the complex potential and the equation for $\mu(t)$ in the periodic case, considered in [4].
2. Suppose that in the plane considered above there is an infinite system of infinite parallel rectilinear cuts (inclusions) of low conductivity and constant width ($\delta=$ const) at a constant spacing of 2 d . The axis 0 x in the z plane is directed along one of the inclusions. Suppose that a biperiodic function with periods $2 a$ and 2 di is defined in the z plane. Then the temperature field perturbed by inclusions will be biperiodic with periods $2 a$ and 2di. As the basic parallelogram, the rectangle $D=\{-a \leq x<a,-\mathrm{d} \leq \mathrm{y}<\mathrm{d}\}$ willbe used. The line Γ coincides with the segment of the real axis $-a \leq \mathrm{x} \leq a$

Since the function $\vartheta(v)$ takes real values for real values of the argument, Eq. (1.11) may be written for the given case, using the boundary values of $\Phi(z)$ in Eq. (1.8), in the form

$$
\begin{equation*}
\Phi^{+}-i \delta \Phi^{+} / 2=\Phi^{-}+i \delta \Phi^{-\prime} / 2 \div \delta \operatorname{Re}\left[i F^{\prime}(x)-C_{0}\right) \tag{2.1}
\end{equation*}
$$

The subscripts + and - denote the limiting values of $\Phi(z)$ and $\Phi^{\prime}(z)$ above and below the integration line $-a \leq$ $\mathrm{x} \leq a$, respectively. The constant C_{0} is determined, in accordance with Eq. (1.9), from the formula

$$
\begin{equation*}
C_{n}=\frac{1}{4 a d} \int_{-a}^{a} \mu(x) d x, C=i C_{n} . \tag{2.2}
\end{equation*}
$$

It will be expedient to introduce the auxiliary function

$$
\begin{equation*}
\Psi^{ \pm}(x)=\Phi^{ \pm}(x) \mp i \delta \Phi^{ \pm^{\prime}}(x) / 2 \tag{2.3}
\end{equation*}
$$

The boundary condition in Eq. (2.1) then takes the simple form

$$
\begin{equation*}
\Psi^{+}--\Psi^{-}=\delta \operatorname{Re}\left[i F^{\prime}(x)-C_{0} \mid .\right. \tag{2.4}
\end{equation*}
$$

Since $\Phi(z)$ and $\Phi^{\prime}(\mathrm{z})$ are written using integrals with the kernel $\mathscr{\vartheta}(\mathrm{v})$ and satisfy the conditions

$$
\bar{\Phi}(z)=-\Phi(z), \quad \bar{\Phi}^{\prime}(z)=-\Phi^{\prime}(z), \quad(\bar{\Phi}(z)=\overline{\Phi(\bar{z})}),
$$

the functions $\Psi^{ \pm}(x)$ are boundary values of the piecewise holomorphic function $\Psi(z)$, satisfying the condition $\bar{\Psi}(\mathrm{z})=-\Psi(\mathrm{z})$ and written using an integral with kernel $\vartheta(v)$. Therefore, on the basis of the Sokhotskii formula [2], the following expression may be written:

$$
\begin{equation*}
\Psi(z)=\frac{\delta}{2 \pi i} \int_{-a}^{a} \operatorname{Re}\left[i F^{\prime}(\xi)-C_{0}\right] \vartheta\left(\frac{\xi-z}{2 a}\right) d \xi \tag{2.5}
\end{equation*}
$$

Using the boundary values of $\Psi(\mathbf{z})$ in Eq. (2.5) and integrating Eq. (2.3), the result obtained for the function $\mu(\mathbf{x})=$ $\Psi^{+}-\Phi^{-}$, taking into account the periodicity of the boundary values $\Phi^{ \pm}(\mathrm{x})$, is

$$
\begin{equation*}
\mu(x)=\frac{2 i}{\delta} \int^{x}\left\{\Psi^{-}(\xi) \exp \left[\frac{2 i(\xi-x)}{\delta}\right]-\Psi^{-}(\xi) \exp \left[\frac{2 i(x-\xi)}{\delta}\right]\right\} d \xi . \tag{2.6}
\end{equation*}
$$

Substituting $\mu(x)$ from Eq. (2.6) into Eqs. (1.6) and (2.2), the function $\Phi(z)$ and the unknown constant C are found.
For example, suppose that in the considered plane sources of equal strength $q>0$ and sinks of strength -q are introduced, respectively, at the points: a) $\mathrm{z}=(2 \mathrm{n}+1) a+\mathrm{i}(2 \mathrm{md}+\mathrm{b}), \mathrm{z}=(2 \mathrm{n}+1) a+\mathrm{i}(2 \mathrm{~m}+1) \mathrm{d}+\mathrm{b}](\mathrm{a}$ linear system of sources and sinks); b) $\mathrm{z}=2 \mathrm{na}+\mathrm{i}(2 \mathrm{md}+\mathrm{b}), \mathrm{z}=(2 \mathrm{n}+1) a+\mathrm{i}[(2 \mathrm{~m}+1) \mathrm{d}+\mathrm{b}]$ (a staggered arrangement of sources and sinks); n and m are integers; $0<b \leq d$. Then the complex potential of the unperturbed field may be written in the form

$$
\begin{equation*}
\text { a) } F(z)=\frac{q}{2 \pi} \ln \frac{\vartheta_{3}(v)}{\vartheta_{2}(v)} ; \quad \text { b) } F(z)=\frac{q}{2 \pi} \ln \frac{\vartheta_{3}(v)}{\vartheta_{1}(v)} ; \quad v-\frac{z-i b}{2 a}, \tag{2.7}
\end{equation*}
$$

Fig. 1. Dimensionless temperature drop along inclusions for different values of b / a.
$\vartheta_{k}(v), k=1,2,3$, are the first, second, and third theta functions [2, 3]. Below, consideration will be limited to the basic rectangle $D=\{-a \leq x<a,-d \leq y<d\}$. The functions $\vartheta(v)$ and $F^{\prime}(x)$ may then be written in a form more convenient for calculation [3]

$$
\begin{align*}
\vartheta\left(\frac{\xi-z}{2 a}\right)= & \frac{\pi}{2 a} \operatorname{ctg} \frac{\pi(\xi-z)}{2 a}+\frac{2 \pi}{a} \sum_{n=1}^{\infty} \frac{h^{2 n}}{1-h^{2 n}} \sin \frac{n \pi(\xi-z)}{a}, \tag{2.8}\\
& \operatorname{Re}\left[i F^{\prime}(x)\right]=\frac{q}{a}\left[\frac{1}{4}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{a}\right],
\end{align*}
$$

a) $a_{n}=(-1)^{n}\left[\frac{1}{2 \gamma^{n}}+\frac{1}{1+h^{n}} \operatorname{sh} \frac{n \pi b}{a}\right], \quad h=\exp \left(-\frac{\pi d}{a}\right)$,
b) $\dot{a}_{n}=\frac{1}{2 \gamma^{n}}-\frac{h^{2 n}-(-1)^{n} h^{n}}{1-h^{2 n}} \operatorname{sh} \frac{n \pi b}{a}, \quad \gamma=\exp \left(\frac{\pi b}{a}\right)$.

Using Eqs. (2.8)-(2.10) and making the necessary computations in accordance with Eqs. (2.5), (2.6), (2.2), and (1.6), the following results are obtained:

$$
\begin{gather*}
\mu(x)=\frac{q \delta}{a}\left[\sum_{n=1}^{\infty} a_{n} b_{n} \cos \frac{n \pi x}{a}+\frac{1}{4(1+\delta / 2 d)}\right], \tag{2.11}\\
\Phi^{ \pm}(z)=\frac{q \delta}{2 a}\left[\sum_{n=1}^{\infty} a_{n} b_{n}\left(\frac{2 i h^{2 n}}{1-h^{2 n}} \sin \frac{n \pi z}{a} \pm \exp \left(\pm \frac{i n \pi z}{a}\right)\right) \pm 1 / 4(1+\delta / 2 d)\right], \quad C_{0}=q / 4 a(1+2 d / \delta), \tag{2.12}\\
b_{n}=\left[1-h^{2 n}-\left(1+h^{2 n}\right) n \pi \delta / 2 a\right] /\left(1-h^{2 n}\right)\left[1-(n \pi \delta / 2 a)^{2}\right] .
\end{gather*}
$$

In Eq. $(2,12)$ the upper (+) and lower (-) signs refers, respectively, to the values $0<y \leq d$ and $-d \leq y<0$; the coefficients a_{n} are determined from Eq. (2.10).

In Fig. 1, curves of the temperature drop (as a function of q) along the inclusions are shown for $0 \leq x / a \leq$ 1 with $\mathrm{d} / a=1, \delta / 2 a=1$, and: a) $\mathrm{b} / a=0.1$ (1), 0.5 (2); b$) \mathrm{b} / a=0.1$ (3), 0.5 (4).

NOTATION

T^{+}and T^{-}	are the values of the temperature T at the left-hand and right-hand edges of the inclusion;
Ψ	is the current function;
$\mathrm{F}(\mathrm{z})$	is the complex potential of temperature field unperturbed by inclusions;
$\mathrm{W}(\mathrm{z})$	is the complex potential of temperature field perturbed by inclusions;

k_{0} and k
Γ_{n}
$\Gamma \quad$ is the piecewise continuous line;
$2 h_{0}$
2ω and $2 \omega^{\prime}$
q
is the smooth line in the complex z plane;
is the width of the inclusion;
are the periods of complex potential $\mathrm{W}(\mathrm{z})$;
is the source strength.
are the thermal conductivity of the inclusions and the body;

LITERATURE CITED

1. I. M. Abdurakhmanov, Inzh. -Fiz. Zh., 22, No. 4 (1972).
2. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variables [in Russian], Fizmatgiz, Moscow (1973).
3. A. Gurvits and R. Kurant, Theory of Functions [in Russian], Fizmatgiz, Moscow (1968).
4. I. M. Abdurakhmanov and B. G. Alibekov, Inzh. -Fiz. Zh., 32, No. 3 (1977).
